全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Design Method of UWB Microstrip Filters Using Adaptive Genetic Algorithms with Defected Ground Structures

DOI: 10.1155/2010/671515

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of adaptive genetic algorithms (AGAs) and defected ground structures (DGSs) on performance optimization of tapered microstrip filter are investigated. The proposed structure achieves an ultra wide stopband with high attenuation within a small surface area, as well as 45% smaller size, in comparison with conventional filters. The parameters of the filter are optimized using in-home AGA code. In the proposed AGA algorithm, the crossover and mutation probabilities are adaptively changed according to the value of individual fitness. Then by utilizing the proposed DGS, a compact S-band lowpass filter with ultra-wide spurious free window is obtained. The proposed filter achieves an insertion loss of 0.8?dB from DC up to 4?GHz and 21?dB rejection in the stopband from 4.3 up to 60?GHz. The fabricated and measured results exhibit good agreement with the simulated results. They demonstrate that combining AGA and DGS yields best possible response for this group of filters. 1. Introduction In practice, high-performance microwave filters with minimized size and weight are playing an important role for design and fabrication of high-efficiency miniaturized microwave systems. Recently, due to high demand for broad band services, design of such miniaturized wide and ultra-wide stopband filters for interference cancellation (by means of out of-band signal suppression) is gaining more and more attention [1–4]. Nonuniform transmission lines (NUTLs) play an important role in microwave circuits. Applications include impedance transformation and matching, filters, and directional couples. The nonuniform line is traditionally analyzed in the frequency domain [5–7]. Genetic algorithms are widely employed in various fields such as optimal engineering designs. They have been successfully applied to finding the global optimum in a variety of unimodal domains. Parameter control methods are classified as deterministic and adaptive. Deterministic systems employ fixed, predefined parameters for GA. On the other hand, adaptive control uses feedback from the search process to find out how the parameter values change [8, 9]. Many researchers have proposed and demonstrated electromagnetic bandgap (EBG) microstrip structures to achieve compact and wide frequency stopband [10–12]. Also recently, DGSs have become one of the most interesting areas of research in modern communication systems [13–16]. The DGS was first proposed by Kim et al. [17]. The microstrip line with DGS patterns in the ground plane has the stopband characteristics due to the equivalent effective inductance of

References

[1]  J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, New York, NY, USA, 2001.
[2]  J.-Z. Gu, W.-Y. Yin, R. Qian, C. Wang, and X.-W. Sun, “A wideband EBG structure with 1D compact microstrip resonant cell,” Microwave and Optical Technology Letters, vol. 45, no. 5, pp. 386–387, 2005.
[3]  M. K. Mandal and S. Sanyal, “Compact wideband bandpass filter,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 1, pp. 46–48, 2006.
[4]  S. Sun and L. Zhu, “Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 8, pp. 440–442, 2006.
[5]  N. H. Younan, B. L. Cox, C. D. Taylor, and W. D. Prather, “Exponentially tapered transmission line antenna,” IEEE Transactions on Electromagnetic Compatibility, vol. 36, no. 2, pp. 141–144, 1994.
[6]  C. E. Baum and J. M. Lehr, “Tapered transmission-line transformers for fast high-voltage transients,” IEEE Transactions on Plasma Science, vol. 30, no. 5, pp. 1712–1721, 2002.
[7]  L. A. Hayden and V. K. Tripathi, “Nonuniformly coupled microstrip transversal filters for analog signal processing,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 1, pp. 47–53, 1991.
[8]  A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 124–141, 1999.
[9]  D. Thierens, “An adaptive pursuit strategy for allocating operator probabilities,” in Proceedings of the ACM Genetic and Evolutionary Computation Conference (GECCO '05), pp. 1539–1546, 2005.
[10]  M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, and M. Sorolla, “Multiple-frequency-tuned photonic bandgap microstrip structures,” IEEE Microwave and Wireless Components Letters, vol. 10, no. 6, pp. 220–222, 2000.
[11]  C. C. Chiau, X. Chen, and C. Parini, “Multiperiod EBG structure for wide stopband circuits,” IEE Proceedings, vol. 150, no. 6, pp. 489–492, 2003.
[12]  Y.-C. Chen, A.-S. Liu, and R.-B. Wu, “A wide-stopband low-pass filter design based on multi-period taper-etched EBG structure,” in Proceedings of the Asia-Pacific Microwave Conference Proceedings (APMC '05), vol. 3, pp. 2125–2127, Suzhou, China, December 2005.
[13]  M. K. Mandal and S. Sanyal, “A novel defected ground structure for planar circuits,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 2, pp. 93–95, 2006.
[14]  Y. Chung, S.-S. Jeon, D. Ahn, J.-I. Choi, and T. Itoh, “High isolation dual-polarized patch antenna using integrated defected ground structure,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 1, pp. 4–6, 2004.
[15]  Z. Pan and J. Wang, “Design of the UWB bandpass filter by coupled microstrip lines with U-shaped defected ground structure,” in Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT '08), vol. 1, pp. 329–332, April 2008.
[16]  T. Kido, H. Deguchi, M. Tsuji, and M. Ohira, “Compact high-performance planar bandpass filters with arbitrarily-shaped conductor patches and slots,” in Proceedings of the 38th European Microwave Conference (EuMC '08), pp. 1165–1168, October 2008.
[17]  C.-S. Kim, J.-S. Park, D. Ahn, and J.-B. Lim, “A novel 1-D periodic defected ground structure for planar circuits,” IEEE Microwave and Wireless Components Letters, vol. 10, no. 4, pp. 131–133, 2000.
[18]  R. E. Collin, Foundations for Microwave Engineering, McGraw-Hill, New York, NY, USA, 2nd edition, 2000.
[19]  K. Lu, “An efficient method for analysis of arbitrary nonuniform transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 1, pp. 9–14, 1997.
[20]  C. L. Edwards, M. L. Edwards, S. Cheng, R. K. Stilwell, and C. C. Davis, “A simplified analytic CAD model for linearly tapered microstrip lines including losses,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 823–830, 2004.
[21]  M.-I. Lai and S.-K. Jeng, “Compact microstrip dual-band bandpass filters design using genetic-algorithm techniques,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 160–168, 2006.
[22]  E. Michielssen, J.-M. Sajer, S. Ranjithant, and R. Mittra, “Design of lightweight, broad-band microwave absorbers using genetic algorithms,” IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 6-7, pp. 1024–1030, 1993.
[23]  T. Nishino and T. Itoh, “Evolutionary generation of microwave line-segment circuits by genetic algorithms,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 9, pp. 2048–2055, 2002.
[24]  M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and mutation in genetic algorithms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 24, no. 4, pp. 656–667, 1994.
[25]  C.-L. Liu, Z.-Y. Wang, and Z. Bao, “A kind of adaptive genetic algorithm and it's application in model identification,” in Proceedings of the 4th International Conference on Machine Learning and Cybernetics (ICMLC '05), vol. 5, pp. 2865–2869, August 2005.
[26]  B. T. Skinner, H. T. Nguyen, and D. K. Liu, “Performance study of a multi-deme parallel genetic algorithm with adaptive mutation,” in Proceedings of the 2nd International Conference on Autonomous Robots and Agents, Palmerston North, New Zealand, December 2004.
[27]  T. C. Edwards and M. B. Steer, Foundations of Interconnect and Microstrip Design, John Wiley & Sons, New York, NY, USA, 3rd edition, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133