全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

General alpha-Wiener bridges

Full-Text   Cite this paper   Add to My Lib

Abstract:

An alpha-Wiener bridge is a one-parameter generalization of the usual Wiener bridge, where the parameter alpha>0 represents a mean reversion force to zero. We generalize the notion of alpha-Wiener bridges to continuous functions $\alpha:[0,T)\to R$. We show that if the limit $\lim_{t\uparrow T}\alpha(t)$ exists and is positive, then a general alpha-Wiener bridge is in fact a bridge in the sense that it converges to 0 at time T with probability one. Further, under the condition $\lim_{t\uparrow T}\alpha(t)\ne 1$ we show that the law of the general alpha-Wiener bridge can not coincide with the law of any non time-homogeneous Ornstein-Uhlenbeck type bridge. In case $\lim_{t\uparrow T}\alpha(t)=1$ we determine all the Ornstein-Uhlenbeck type processes from which one can derive the general alpha-Wiener bridge by conditioning the original Ornstein-Uhlenbeck type process to be in zero at time T.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133