全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Reductions of tensor categories modulo primes

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study good (i.e., semisimple) reductions of semisimple rigid tensor categories modulo primes. A prime p is called good for a semisimple rigid tensor category C if such a reduction exists (otherwise, it is called bad). It is clear that a good prime must be relatively prime to the M\"uger squared norm |V|^2 of any simple object V of C. We show, using the Ito-Michler theorem in finite group theory, that for group-theoretical fusion categories, the converse is true. While the converse is false for general fusion categories, we obtain results about good and bad primes for many known fusion categories (e.g., for Verlinde categories). We also state some questions and conjectures regarding good and bad primes.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133