全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1998 

Flat Complex Vector Bundles, The Beltrami Differential and W-Algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since the appearance of the paper by Bilal & al. in 1991, it has been widely assumed that W-algebras originating from the Hamiltonian reduction of an SL(n,C)-bundle over a Riemann surface give rise to a flat connection, in which the Beltrami differential may be identified. In this Letter, it is shown that the use of the Beltrami parametrisation of complex structures on a compact Riemann surface over which flat complex vector bundles are considered, allows to construct the above mentioned flat connection. It is stressed that the modulus of the Beltrami differential is of necessity less than one, and that solutions of the so-called Beltrami equation give rise to an orientation preserving smooth change of local complex coordinates. In particular, the latter yields a smooth equivalence between flat complex vector bundles. The role of smooth diffeomorphisms which induce equivalent complex structures is specially emphasized. Furthermore, it is shown that, while the construction given here applies to the special case of the Virasoro algebra, the extension to flat complex vector bundles of arbitrary rank does not provide "generalizations" of the Beltrami differential usually considered as central objects for such non-linear symmetries.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133