全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Maximal antichains of minimum size

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $n\geqslant 4$ be a natural number, and let $K$ be a set $K\subseteq [n]:={1,2,...,n}$. We study the problem to find the smallest possible size of a maximal family $\mathcal{A}$ of subsets of $[n]$ such that $\mathcal{A}$ contains only sets whose size is in $K$, and $A\not\subseteq B$ for all ${A,B}\subseteq\mathcal{A}$, i.e. $\mathcal{A}$ is an antichain. We present a general construction of such antichains for sets $K$ containing 2, but not 1. If $3\in K$ our construction asymptotically yields the smallest possible size of such a family, up to an $o(n^2)$ error. We conjecture our construction to be asymptotically optimal also for $3\not\in K$, and we prove a weaker bound for the case $K={2,4}$. Our asymptotic results are straightforward applications of the graph removal lemma to an equivalent reformulation of the problem in extremal graph theory which is interesting in its own right.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133