全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

On crown-free families of subsets

Full-Text   Cite this paper   Add to My Lib

Abstract:

The crown $\Oh_{2t}$ is a height-2 poset whose Hasse diagram is a cycle of length $2t$. A family $\F$ of subsets of $[n]:=\{1,2..., n\}$ is {\em $\Oh_{2t}$-free} if $\Oh_{2t}$ is not a weak subposet of $(\F,\subseteq)$. Let $\La(n,\Oh_{2t})$ be the largest size of $\Oh_{2t}$-free families of subsets of $[n]$. De Bonis-Katona-Swanepoel proved $\La(n,\Oh_{4})= {n\choose \lfloor \frac{n}{2} \rfloor} + {n\choose \lceil \frac{n}{2} \rceil}$. Griggs and Lu proved that $\La(n,\Oh_{2t})=(1+o(1))\nchn$ for all even $t\ge 4$. In this paper, we prove $\La(n,\Oh_{2t})=(1+o(1))\nchn$ for all odd $t\geq 7$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133