全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

New realization of cyclotomic $q$-Schur algebras I

Full-Text   Cite this paper   Add to My Lib

Abstract:

We introduce a Lie algebra $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ and an associative algebra $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$ associated with the Cartan data of $\mathfrak{gl}_m$ which is separated into $r$ parts with respect to $\mathbf{m}=(m_1, \dots, m_r)$ such that $m_1+ \dots + m_r =m$. We show that the Lie algebra $\mathfrak{g}_{\mathbf{Q}} (\mathbf{m})$ is a filtered deformation of the current Lie algebra of $\mathfrak{gl}_m$, and we can regard the algebra $\mathcal{U}_{q, \mathbf{Q}}(\mathbf{m})$ as a "$q$-analogue" of $U(\mathfrak{g}_{\mathbf{Q}}(\mathbf{m}))$. Then, we realize a cyclotomic $q$-Schur algebra as a quotient algebra of $\mathcal{U}_{q, \mathbf{Q}}(\mathbf{m})$ under a certain mild condition. We also study the representation theory for $\mathfrak{g}_{\mathbf{Q}}(\mathbf{m})$ and $\mathcal{U}_{q,\mathbf{Q}}(\mathbf{m})$, and we apply them to the representations of the cyclotomic $q$-Schur algebras.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133