全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

The 2-color Rado number of $x_1+x_2+\cdots +x_n=y_1+y_2+\cdots +y_k$

Full-Text   Cite this paper   Add to My Lib

Abstract:

In 1982, Beutelspacher and Brestovansky determined the 2-color Rado number of the equation $$x_1+x_2+\cdots +x_{m-1}=x_m$$ for all $m\geq 3.$ Here we extend their result by determining the 2-color Rado number of the equation $$x_1+x_2+\cdots +x_n=y_1+y_2+\cdots +y_k$$ for all $n\geq 2$ and $k\geq 2.$ As a consequence, we determine the 2-color Rado number of $$x_1+x_2+\cdots +x_n=a_1y_1+\cdots +a_{\ell}y_{\ell}$$ in all cases where $n\geq 2$ and $n\geq a_1+\cdots +a_{\ell},$ and in most cases where $n\geq 2$ and $2n\geq a_1+\cdots +a_{\ell}.$

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133