全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Satisfiability threshold for random regular NAE-SAT

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the random regular $k$-NAE-SAT problem with $n$ variables each appearing in exactly $d$ clauses. For all $k$ exceeding an absolute constant $k_0$, we establish explicitly the satisfiability threshold $d_*=d_*(k)$. We prove that for $dd_*$ the problem is unsatisfiable with high probability. If the threshold $d_*$ lands exactly on an integer, we show that the problem is satisfiable with probability bounded away from both zero and one. This is the first result to locate the exact satisfiability threshold in a random constraint satisfaction problem exhibiting the condensation phenomenon identified by Krzakala et al. (2007). Our proof verifies the one-step replica symmetry breaking formalism for this model. We expect our methods to be applicable to a broad range of random constraint satisfaction problems and combinatorial problems on random graphs.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133