全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Floer cohomology of $\mathfrak{g}$-equivariant Lagrangian branes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Building on Seidel-Solomon's fundamental work, we define the notion of a $\mathfrak{g}$-equivariant Lagrangian brane in an exact symplectic manifold $M$ where $\mathfrak{g} \subset SH^1(M)$ is a sub-Lie algebra of the symplectic cohomology of $M$. When $M$ is a (symplectic) mirror to an (algebraic) homogeneous space $G/P$, homological mirror symmetry predicts that there is an embedding of $\mathfrak{g}$ in $SH^1(M)$. This allows us to study a mirror theory to classical constructions of Borel-Weil and Bott. We give explicit computations recovering all finite dimensional irreducible representations of $\mathfrak{sl}_2$ as representations on the Floer cohomology of an $\mathfrak{sl}_2$-equivariant Lagrangian brane and discuss generalizations to arbitrary finite-dimensional semisimple Lie algebras.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133