全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Weak solutions of backward stochastic differential equations with continuous generator

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove the existence of a weak solution to a backward stochastic differential equation (BSDE) $$ Y_t=\xi+\int_t^T f(s,X_s,Y_s,Z_s)\,ds-\int_t^T Z_s\,d\wien_s$$ in a finite-dimensional space, where $f(t,x,y,z)$ is affine with respect to $z$, and satisfies a sublinear growth condition and a continuity condition This solution takes the form of a triplet $(Y,Z,L)$ of processes defined on an extended probability space and satisfying $$ Y_t=\xi+\int_t^T f(s,X_s,Y_s,Z_s)\,ds-\int_t^T Z_s\,d\wien_s-(L_T-L_t)$$ where $L$ is a continuous martingale which is orthogonal to any $\wien$. The solution is constructed on an extended probability space, using Young measures on the space of trajectories. One component of this space is the Skorokhod space D endowed with the topology S of Jakubowski.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133