全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

The Brownian map is the scaling limit of uniform random plane quadrangulations

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove that uniform random quadrangulations of the sphere with $n$ faces, endowed with the usual graph distance and renormalized by $n^{-1/4}$, converge as $n\to\infty$ in distribution for the Gromov-Hausdorff topology to a limiting metric space. We validate a conjecture by Le Gall, by showing that the limit is (up to a scale constant) the so-called {\em Brownian map}, which was introduced by Marckert & Mokkadem and Le Gall as the most natural candidate for the scaling limit of many models of random plane maps. The proof relies strongly on the concept of {\em geodesic stars} in the map, which are configurations made of several geodesics that only share a common endpoint and do not meet elsewhere.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133