全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Moment approach for singular values distribution of a large auto-covariance matrix

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $(\varepsilon_{t})_{t>0}$ be a sequence of independent real random vectors of $p$-dimension and let $X_T= \sum_{t=s+1}^{s+T}\varepsilon_t\varepsilon^T_{t-s}/T$ be the lag-$s$ ($s$ is a fixed positive integer) auto-covariance matrix of $\varepsilon_t$. Since $X_T$ is not symmetric, we consider its singular values, which are the square roots of the eigenvalues of $X_TX^T_T$. Therefore, the purpose of this paper is to investigate the limiting behaviors of the eigenvalues of $X_TX^T_T$ in two aspects. First, we show that the empirical spectral distribution of its eigenvalues converges to a nonrandom limit $F$. Second, we establish the convergence of its largest eigenvalue to the right edge of $F$. Both results are derived using moment methods.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133