全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Finsler's Lemma for Matrix Polynomials

DOI: 10.1016/j.laa.2014.09.037

Full-Text   Cite this paper   Add to My Lib

Abstract:

Finsler's Lemma charactrizes all pairs of symmetric $n \times n$ real matrices $A$ and $B$ which satisfy the property that $v^T A v>0$ for every nonzero $v \in \mathbb{R}^n$ such that $v^T B v=0$. We extend this characterization to all symmetric matrices of real multivariate polynomials, but we need an additional assumption that $B$ is negative semidefinite outside some ball. We also give two applications of this result to Noncommutative Real Algebraic Geometry which for $n=1$ reduce to the usual characterizations of positive polynomials on varieties and on compact sets.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133