全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

The Gromov-Witten invariants of the Hilbert schemes of points on surfaces with $p_g > 0$

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we study the Gromov-Witten theory of the Hilbert schemes X^{[n]} of points on smooth projective surfaces X with positive geometric genus p_g. Using cosection localization technique due to Y. Kiem and J. Li [KL1, KL2], we prove that if X is a simply connected surface admitting a holomorphic differential two-form with irreducible zero divisor, then all the Gromov-Witten invariants of X^{[n]} defined via the moduli space $\Mbar_{g, r}(X^{[n]}, \beta)$ vanish except possibly when $\beta = d_0 \beta_{K_X} - d \beta_n$ where d is an integer, $d_0 \ge 0$ is a rational number, and $\beta_n$ and $\beta_{K_X}$ are defined in (3.2) and (3.3) respectively. When $n=2$, the exceptional cases can be further reduced to the invariants: $<1>_{0, \beta_{K_X} - d\beta_2}^{X^{[2]}}$ with $K_X^2 = 1$ and $d \le 3$, and $<1>_{1, d\beta_2}^{X^{[2]}}$ with $d \ge 1$. We show that when $K_X^2 = 1$, $$<1>_{0, \beta_{K_X} - 3 \beta_2}^{X^{[2]}} = (-1)^{\chi(\mathcal O_X)}$$ which is consistent with a well-known formula of Taubes [Tau]. In addition, for an arbitrary smooth projective surface X and $d \ge 1$, we verify that $$<1>_{1, d\beta_2}^{X^{[2]}} = K_X^2/(12d).$$

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133