|
Mathematics 2014
The local spectrum of the Dirac operator for the universal cover of $SL_2(\mathbb R)$Abstract: Using representation theory, we compute the spectrum of the Dirac operator on the universal covering group of $SL_2(\mathbb R)$, exhibiting it as the generator of $KK^1(\mathbb C, \mathfrak A)$, where $\mathfrak A$ is the reduced $C^*$-algebra of the group. This yields a new and direct computation of the $K$-theory of $\mathfrak A$. A fundamental role is played by the limit-of-discrete-series representation, which is the frontier between the discrete and the principal series of the group. We provide a detailed analysis of the localised spectra of the Dirac operator and compute the Dirac cohomology.
|