全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Bridgeland Stability of Line Bundles on Surfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the Bridgeland stability of line bundles on surfaces using Bridgeland stability conditions determined by divisors. We show that given a smooth projective surface $S$, a line bundle $L$ is always Bridgeland stable for those stability conditions if there are no curves $C\subseteq S$ of negative self-intersection. When a curve $C$ of negative self-intersection is present, $L$ is destabilized by $L(-C)$ for some stability conditions. We conjecture that line bundles of the form $L(-C)$ are the only objects that can destabilize $L$, and that torsion sheaves of the form $L(C)|_C$ are the only objects that can destabilize $L[1]$. We prove our conjecture in several cases, and in particular for Hirzebruch surfaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133