全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Embedding a Latin square with transversal into a projective space

DOI: 10.1016/j.jcta.2011.01.013

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Latin square of side n defines in a natural way a finite geometry on 3n points, with three lines of size n and n^2 lines of size 3. A Latin square of side n with a transversal similarly defines a finite geometry on 3n+1 points, with three lines of size n, n^2-n lines of size 3, and n concurrent lines of size 4. A collection of k mutually orthogonal Latin squares defines a geometry on kn points, with k lines of size n and n^2 lines of size k. Extending work of Bruen and Colbourn (J. Combin. Th. Ser. A 92 (2000), 88-94), we characterise embeddings of these finite geometries into projective spaces over skew fields.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133