全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

O-operators on associative algebras and dendriform algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

An O-operator is a relative version of a Rota-Baxter operator and, in the Lie algebra context, is originated from the operator form of the classical Yang-Baxter equation. We generalize the well-known construction of dendriform dialgebras and trialgebras from Rota-Baxter algebras to a construction from O-operators. We then show that this construction from O-operators gives all dendriform dialgebras and trialgebras. Furthermore there are bijections between certain equivalence classes of invertible O-operators and certain equivalence classes of dendriform dialgebras and trialgebras.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133