|
Mathematics 2015
Uniform Rectifiability and harmonic measure IV: Ahlfors regularity plus Poisson kernels in $L^p$ implies uniform rectifiabilityAbstract: Let $E\subset \mathbb{R}^{n+1}$, $n\ge 2$, be an Ahlfors-David regular set of dimension $n$. We show that the weak-$A_\infty$ property of harmonic measure, for the open set $\Omega:= \mathbb{R}^{n+1}\setminus E$, implies uniform rectifiability of $E$.
|