全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Three consecutive almost squares

DOI: 10.1142/S1793042116500603

Full-Text   Cite this paper   Add to My Lib

Abstract:

Given a positive integer $n$, we let ${\rm sfp}(n)$ denote the squarefree part of $n$. We determine all positive integers $n$ for which $\max \{ {\rm sfp}(n), {\rm sfp}(n+1), {\rm sfp}(n+2) \} \leq 150$ by relating the problem to finding integral points on elliptic curves. We also prove that there are infinitely many $n$ for which \[ \max \{ {\rm sfp}(n), {\rm sfp}(n+1), {\rm sfp}(n+2) \} < n^{1/3}. \]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133