全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

A definable, p-adic analogue of Kirszbraun's Theorem on extensions of Lipschitz maps

DOI: 10.1017/S1474748015000390

Full-Text   Cite this paper   Add to My Lib

Abstract:

A direct application of Zorn's Lemma gives that every Lipschitz map $f:X\subset \mathbb{Q}_p^n\to \mathbb{Q}_p^\ell$ has an extension to a Lipschitz map $\widetilde f: \mathbb{Q}_p^n\to \mathbb{Q}_p^\ell$. This is analogous, but more easy, to Kirszbraun's Theorem about the existence of Lipschitz extensions of Lipschitz maps $S\subset \mathbb{R}^n\to \mathbb{R}^\ell$. Recently, Fischer and Aschenbrenner obtained a definable version of Kirszbraun's Theorem. In the present paper, we prove in the $p$-adic context that $\widetilde f$ can be taken definable when $f$ is definable, where definable means semi-algebraic or subanalytic (or, some intermediary notion). We proceed by proving the existence of definable, Lipschitz retractions of $\mathbb{Q}_p^n$ to the topological closure of $X$ when $X$ is definable.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133