全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Local limit theorem for the maximum of a random walk

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider a family of $\Delta$-latticed aperiodic random walks $\{S^{(a)},0\le a\le a_0\}$ with increments $X_i^{(a)}$ and non-positive drift $-a$. Suppose that $\sup_{a\le a_0}\mathbf{E}[(X^{(a)})^2]<\infty$ and $\sup_{a\le a_0}\mathbf{E}[\max\{0,X^{(a)}\}^{2+\varepsilon}]<\infty$ for some $\varepsilon>0$. Assume that $X^{(a)}\xrightarrow[]{w} X^{(0)}$ as $a\to 0$ and denote by $M^{(a)}=\max_{k\ge 0} S_k^{(a)}$ the maximum of the random walk $S^{(a)}$. In this paper we provide the asymptotics of $\mathbf{P}(M^{(a)}=y\Delta)$ as $a\to 0$ in the case, when $y\to \infty$ and $ay=O(1)$. This asymptotics follows from a representation of $\mathbf{P}(M^{(a)}=y\Delta)$ via a geometric sum and a uniform renewal theorem, which is also proved in this paper.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133