全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Kato smoothing and Strichartz estimates for wave equations with magnetic potentials

DOI: 10.1007/s00220-014-2169-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $H$ be a selfadjoint operator and $A$ a closed operator on a Hilbert space $\mathcal{H}$. If $A$ is $H$-(super)smooth in the sense of Kato-Yajima, we prove that $AH^{-\frac14}$ is $\sqrt{H}$-(super)smooth. This allows to include wave and Klein-Gordon equations in the abstract theory at the same level of generality as Schr\"{o}dinger equations. We give a few applications and in particular, based on the resolvent estimates of Erdogan, Goldberg and Schlag \cite{ErdoganGoldbergSchlag09-a}, we prove Strichartz estimates for wave equations perturbed with large magnetic potentials on $\mathbb{R}^{n}$, $n\ge3$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133