全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

A companion for the Kiefer--Wolfowitz--Blum stochastic approximation algorithm

DOI: 10.1214/009053606000001451

Full-Text   Cite this paper   Add to My Lib

Abstract:

A stochastic algorithm for the recursive approximation of the location $\theta$ of a maximum of a regression function was introduced by Kiefer and Wolfowitz [Ann. Math. Statist. 23 (1952) 462--466] in the univariate framework, and by Blum [Ann. Math. Statist. 25 (1954) 737--744] in the multivariate case. The aim of this paper is to provide a companion algorithm to the Kiefer--Wolfowitz--Blum algorithm, which allows one to simultaneously recursively approximate the size $\mu$ of the maximum of the regression function. A precise study of the joint weak convergence rate of both algorithms is given; it turns out that, unlike the location of the maximum, the size of the maximum can be approximated by an algorithm which converges at the parametric rate. Moreover, averaging leads to an asymptotically efficient algorithm for the approximation of the couple $(\theta,\mu)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133