全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Distributions of discriminants of cubic algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the space of binary cubic and quadratic forms over the ring of integers $O$ of an algebraic number field $k$. By applying the theory of prehomogeneous vector spaces founded by M. Sato and T. Shintani, we can associate the zeta functions for these spaces. Applying these zeta functions, we derive some density theorems on the distributions of discriminants of cubic algebras of $O$. In the case $k$ is a quadratic field, we give a correction term as well as the main term. These are generalizations of Shintani's asymptotic formulae of the mean values of class numbers of binary cubic forms over $\mathbb Z$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133