全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Injective convolution operators on ${\ell}^{\infty}(Γ)$ are surjective

DOI: 10.4153/CMB-2010-053-5

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\Gamma$ be a discrete group and let $f \in \ell^1(\Gamma)$. We observe that if the natural convolution operator $\rho_f:\ell^{\infty}(\Gamma)\to \ell^{\inf ty}(\Gamma)$ is injective, then f is invertible in $\ell^1(\Gamma)$. Our proof simplifies and generalizes calculations in a preprint of Deninger and Schmidt, by appealing to the direct finiteness of the algebra $\ell^1(\Gamma)$. We give simple examples to show that in general one cannot replace $\ell^{\infty}$ with $\ell^p$, $1\leq p< \infty$, nor with $L^{\infty}(G)$ for nondiscrete G. Finally, we consider the problem of extending the main result to the case of weighted convolution operators on $\Gamma$, and give some partial results.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133