全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Divisor graphs have arbitrary order and size

Full-Text   Cite this paper   Add to My Lib

Abstract:

A divisor graph $G$ is an ordered pair $(V, E)$ where $V \subset \mathbbm{Z}$ and for all $u \neq v \in V$, $u v \in E$ if and only if $u \mid v$ or $v \mid u$. A graph which is isomorphic to a divisor graph is also called a divisor graph. In this note, we will prove that for any $n \geqslant 1$ and $0 \leqslant m \leqslant \binom{n}{2}$ then there exists a divisor graph of order $n$ and size $m$. We also present a simple proof of the characterization of divisor graphs which is due to Chartran, Muntean, Saenpholpant and Zhang.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133