全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Torelli theorem for the moduli spaces of connections on a Riemann surface

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $(X,x_0)$ be any one--pointed compact connected Riemann surface of genus $g$, with $g\geq 3$. Fix two mutually coprime integers $r>1$ and $d$. Let ${\mathcal M}_X$ denote the moduli space parametrizing all logarithmic $\text{SL}(r,{\mathbb C})$--connections, singular over $x_0$, on vector bundles over $X$ of degree $d$. We prove that the isomorphism class of the variety ${\mathcal M}_X$ determines the Riemann surface $X$ uniquely up to an isomorphism, although the biholomorphism class of ${\mathcal M}_X$ is known to be independent of the complex structure of $X$. The isomorphism class of the variety ${\mathcal M}_X$ is independent of the point $x_0 \in X$. A similar result is proved for the moduli space parametrizing logarithmic $\text{GL}(r,{\mathbb C})$--connections, singular over $x_0$, on vector bundles over $X$ of degree $d$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133