|
Mathematics 2009
Integral representations of the Legendre chi functionDOI: 10.1016/j.jmaa.2006.10.083 Abstract: We, by making use of elementary arguments, deduce integral representations of the Legendre chi function $\chi_{s}(x)$ valid for $|z|<1$ and $\Re(s)>1$. Our earlier established results on the integral representations for the Riemann zeta function $\zeta(2 n+1)$ and the Dirichlet beta function $\beta(2 n)$ ,$ n\in\mathbb{N}$, are direct consequence of these representations.
|