全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Large deviation principle for one-dimensional random walk in dynamic random environment: attractive spin-flips and simple symmetric exclusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider a one-dimensional shift-invariant attractive spin-flip system in equilibrium, constituting a dynamic random environment, together with a nearest-neighbor random walk that on occupied sites has a local drift to the right but on vacant sites has a local drift to the left. In previous work we proved a law of large numbers for dynamic random environments satisfying a space-time mixing property called cone-mixing. If an attractive spin-flip system has a finite average coupling time at the origin for two copies starting from the all-occupied and the all-vacant configuration, respectively, then it is cone-mixing. In the present paper we prove a large deviation principle for the empirical speed of the random walk, both quenched and annealed, and exhibit some properties of the associated rate functions. Under an exponential space-time mixing condition for the spin-flip system, which is stronger than cone-mixing, the two rate functions have a unique zero, i.e., the slow-down phenomenon known to be possible in a static random environment does not survive in a fast mixing dynamic random environment. In contrast, we show that for the simple symmetric exclusion dynamics, which is not cone-mixing (and which is not a spin-flip system either), slow-down does occur.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133