Objective. Pentraxin 3 (PTX3), newly discovered inflammation marker, is a member of acute-phase proteins. The hypothesis, synthesis of gingival tissue and serum PTX-3 increases in the experimental periodontitis model (with 10-day and 40-day periods), was tested by detecting gingival tissue and serum PTX-3 levels in rats with experimental periodontitis. Methods. Thirty rats were randomly divided into three groups of ten animals each: ligature-induced experimental periodontitis groups (with 10-day (Group1) and 40-day periods (Group2)) and healthy group (Group3). At the end of experimental period, rats were sacrificed, and radiological and histomorphometric analyses were performed on the mandibles. PTX3 levels were measured in gingival tissue and serum samples using ELISA. Plasma fibrinogen levels were measured according to the nephelometric method. Results. Significant alveolar bone resorption and periodontal inflammation were evident in periodontitis groups. Levels of PTX3 in gingival tissue were statistically higher in Group 1 than those in groups 2 and 3 ( ). No significant difference was found in serum PTX3 levels between experimental periodontitis and control groups ( ). Plasma fibrinogen levels were significantly increased in the experimental periodontitis groups ( ). Conclusion. PTX3 seems to be associated with tissue destruction in earlier periods of inflammatory periodontal disease, contrary to the fibrinogen findings. 1. Introduction Periodontal disease is a multifactorial infectious disease; although the main cause of periodontal disease is the presence of periodontal microorganisms, subsequent progression and disease severity are considered to be determined by the host immune response [1–4]. Mediators produced as a part of host response that contribute to tissue destruction include acute-phase proteins, cytokines, and prostaglandins [5–8]. The acute-phase response is a nonspecific process that may occur in the initial host response to injuries, infections, ischaemic necrosis, or malignancy [9]. It is initiated by the activation of local macrophages and other cells (including fibroblasts and endothelial cells) and has a variety of functions including proinflammatory properties, activation of complement factors, neutralization of invasive pathogens, and stimulation of repair and regeneration of tissues [9, 10]. Data show that acute-phase proteins, plasma proteins, not only appear in acute inflammation, but also in longstanding, chronic conditions [10]. Acute-phase proteins are generally increased following a microbial infection [11]. It is,
References
[1]
J. M. Albandar, J. A. Brunelle, and A. Kingman, “Destructive periodontal disease in adults 30 years of age and older in the United States, 1988–1994,” Journal of Periodontology, vol. 70, no. 1, pp. 13–29, 1999.
[2]
S. Renvert, C. Lindahl, A. M. Roos-Jans?ker, and J. Lessemi, “Short-term effects of an anti- inflammatory treatment on clinical parameters and serum levels of c-reactive protein and proinflammatory cytokines in subjects with periodontitis,” Journal of Periodontology, vol. 80, no. 6, pp. 892–900, 2009.
[3]
T. Honda, H. Domon, T. Okui, K. Kajita, R. Amanuma, and K. Yamazaki, “Balance of inflammatory response in stable gingivitis and progressive periodontitis lesions,” Clinical and Experimental Immunology, vol. 144, no. 1, pp. 35–40, 2006.
[4]
G. C. Keles, B. O. Cetinkaya, C. Eroglu, S. B. Simsek, and H. Kahraman, “Vascular endothelial growth factor expression levels of gingiva in gingivitis and periodontitis patients with/without diabetes mellitus,” Inflammation Research, vol. 59, no. 7, pp. 543–549, 2010.
[5]
B. G. Loos, J. Craandijk, F. J. Hoek, P. M. E. Wertheim-Van Dillen, and U. Van Der Velden, “Elevation of systemic markers related to cardiovascular diseases in the peripheral blood of periodontitis patients,” Journal of Periodontology, vol. 71, no. 10, pp. 1528–1534, 2000.
[6]
G. D. Slade, S. Offenbacher, J. D. Beck, G. Heiss, and J. S. Pankow, “Acute-phase inflammatory response to periodontal disease in the US population,” Journal of Dental Research, vol. 79, no. 1, pp. 49–57, 2000.
[7]
E. De Nardin, “The role of inflammatory and immunological mediators in periodontitis and cardiovascular disease,” Annals of Periodontology, vol. 6, no. 1, pp. 30–40, 2001.
[8]
A. R. Pradeep, R. Kathariya, N. M. Raghavendra, and A. Sharma, “Levels of pentraxin-3 in gingival crevicular fluid and plasma in periodontal health and disease,” Journal of Periodontology, vol. 82, no. 5, pp. 734–741, 2011.
[9]
M. Ide, D. McPartlin, P. Y. Coward, M. Crook, P. Lumb, and R. F. Wilson, “Effect of treatment of chronic periodontitis on levels of serum markers of acute-phase inflammatory and vascular responses,” Journal of Clinical Periodontology, vol. 30, no. 4, pp. 334–340, 2003.
[10]
B. G. Loos, “Systemic markers of inflammation in periodontitis,” Journal of Periodontology, vol. 76, no. 11, pp. 2106–2115, 2005.
[11]
P. M. Lydyard and M. F. Cole, “The immune system and host defense,” in Oral Microbiology and Immunology, R. J. Lamont, R. A. Burne, M. S. Lantz, and D. J. Leblanc, Eds., pp. 23–45, ASM Press, Washington, DC, USA, 2006.
[12]
M. B. Pepys and M. L. Baltz, “Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein,” Advances in Immunology, vol. 34, pp. 141–212, 1983.
[13]
G. D. Norata, P. Marchesi, V. K. Pulakazhi Venu et al., “Deficiency of the long pentraxin ptx3 promotes vascular inflammation and atherosclerosis,” Circulation, vol. 120, no. 8, pp. 699–708, 2009.
[14]
C. Garlanda, B. Bottazzi, A. Bastone, and A. Mantovani, “Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility,” Annual Review of Immunology, vol. 23, pp. 337–366, 2005.
[15]
V. Maina, A. Cotena, A. Doni et al., “Coregulation in human leukocytes of the long pentraxin PTX3 and TSG-6,” Journal of Leukocyte Biology, vol. 86, no. 1, pp. 123–132, 2009.
[16]
S. Jaillon, G. Peri, Y. Delneste et al., “The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 793–804, 2007.
[17]
A. R. Goodman, D. E. Levy, L. F. L. Reis, and J. Vilcek, “Differential regulation of TSG-14 expression in murine fibroblasts and peritoneal macrophages,” Journal of Leukocyte Biology, vol. 67, no. 3, pp. 387–395, 2000.
[18]
V. V. Alles, B. Bottazzi, G. Peri, J. Golay, M. Introna, and A. Mantovani, “Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes,” Blood, vol. 84, no. 10, pp. 3483–3493, 1994.
[19]
A. Doni, M. Michela, B. Bottazzi et al., “Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: stimulation by IL-10 and inhibition by IFN-γ,” Journal of Leukocyte Biology, vol. 79, no. 4, pp. 797–802, 2006.
[20]
A. J. Nauta, S. De Haij, B. Bottazzi et al., “Human renal epithelial cells produce the long pentraxin PTX3,” Kidney International, vol. 67, no. 2, pp. 543–553, 2005.
[21]
C. Gustin, E. Delaive, M. Dieu, D. Calay, and M. Raes, “Upregulation of pentraxin-3 in human endothelial cells after lysophosphatidic acid exposure,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 3, pp. 491–497, 2008.
[22]
M. Klouche, G. Peri, C. Knabbe et al., “Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells,” Atherosclerosis, vol. 175, no. 2, pp. 221–228, 2004.
[23]
A. A. M. Dias, A. R. Goodman, J. L. Dos Santos et al., “TSG-14 transgenic mice have improved survival to endotoxemia and to CLP-induced sepsis,” Journal of Leukocyte Biology, vol. 69, no. 6, pp. 928–936, 2001.
[24]
A. Mantovani, C. Garlanda, A. Doni, and B. Bottazzi, “Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX3,” Journal of Clinical Immunology, vol. 28, no. 1, pp. 1–13, 2008.
[25]
M. S. Rolph, S. Zimmer, B. Bottazzi, C. Garlanda, A. Mantovani, and G. K. Hansson, “Production of the long pentraxin PTX3 in advanced atherosclerotic plaques,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. e10–14, 2002.
[26]
N. Kotooka, T. Inoue, D. Fujimatsu et al., “Pentraxin3 is a novel marker for stent-induced inflammation and neointimal thickening,” Atherosclerosis, vol. 197, no. 1, pp. 368–374, 2008.
[27]
M. M. Luchetti, G. Piccinini, A. Mantovani et al., “Expression and production of the long pentraxin PTX3 in rheumatoid arthritis (RA),” Clinical and Experimental Immunology, vol. 119, no. 1, pp. 196–202, 2000.
[28]
F. Fazzini, G. Peri, A. Doni et al., “PTX3 in small-vessel vasculitides: an independent indicator of disease activity produced at sites of inflammation,” Arthritis and Rheumatism, vol. 44, no. 12, pp. 2841–2850, 2001.
[29]
M. Tong, J. J. Carrero, A. R. Qureshi et al., “Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 5, pp. 889–897, 2007.
[30]
K. Inoue, A. Sugiyama, P. C. Reid et al., “Establishment of a high sensitivity plasma assay for human pentraxin3 as a marker for unstable angina pectoris,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 161–167, 2007.
[31]
M. A. Listgarten, “Nature of periodontal diseases: pathogenic mechanisms,” Journal of Periodontal Research, vol. 22, no. 3, pp. 172–178, 1987.
[32]
G. ?. Kele?, B. ?. ?etinkaya, S. B. ?im?ek, D. K?prülü, and H. Kahraman, “The role of periodontal disease on acute phase proteins in patients with coronary heart disease and diabetes,” Turkish Journal of Medical Sciences, vol. 37, no. 1, pp. 39–44, 2007.
[33]
Y. Fujita, H. Ito, S. Sekino, and Y. Numabe, “Correlations between pentraxin 3 or cytokine levels in gingival crevicular fluid and clinical parameters of chronic periodontitis,” Odontology, vol. 100, no. 2, pp. 215–221, 2012.
[34]
S. E. Sahingur, A. Sharma, R. J. Genco, and E. De Nardin, “Association of increased levels of fibrinogen ad the -455G/A fibrinogen gene polymorphism with chronic periodontitis,” Journal of Periodontology, vol. 74, no. 3, pp. 329–337, 2003.
[35]
C. Schwahn, H. V?lzke, D. M. Robinson et al., “Periodontal disease, but not edentulism, is independently associated with increased plasma fibrinogen levels. Results from a population-based study,” Thrombosis and Haemostasis, vol. 92, no. 2, pp. 244–252, 2004.
[36]
G. C. Keles, G. Acikgoz, B. Ayas, E. Sakallioglu, and E. Firatli, “Determination of systemically & locally induced periodontal defects in rats,” Indian Journal of Medical Research, vol. 121, no. 3, pp. 176–184, 2005.
[37]
B. O. Cetinkaya, G. Acikgoz, B. Ayas, E. Aliyev, and E. E. Sakallioglu, “Increased expression of vascular endothelial growth factor in cyclosporin A-induced gingival overgrowth in rats,” Journal of Periodontology, vol. 77, no. 1, pp. 54–60, 2006.
[38]
A. Bosutti, G. Malaponte, M. Zanetti et al., “Calorie restriction modulates inactivity-induced changes in the inflammatory markers C-reactive protein and pentraxin-3,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 8, pp. 3226–3229, 2008.
[39]
F. Breviario, E. M. D'Aniello, J. Golay et al., “Interleukin-1-inducible genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid P component,” Journal of Biological Chemistry, vol. 267, no. 31, pp. 22190–22197, 1992.
[40]
G. W. Lee, A. R. Goodman, T. H. Lee, and J. Vilcek, “Relationship of TSG-14 protein to the pentraxin family of major acute phase proteins,” Journal of Immunology, vol. 153, no. 8, pp. 3700–3707, 1994.
[41]
E. Napoleone, A. Di Santo, A. Bastone et al., “Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: a novel link between vascular inflammation and clotting activation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. 782–787, 2002.
[42]
V. V. Alles, B. Bottazzi, G. Peri, J. Golay, M. Introna, and A. Mantovani, “Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes,” Blood, vol. 84, no. 10, pp. 3483–3493, 1994.
[43]
A. R. Pradeep, R. Kathariya, P. Arjun Raju, R. Sushma Rani, A. Sharma, and N. M. Raghavendra, “Risk factors for chronic kidney diseases may include periodontal diseases, as estimated by the correlations of plasma pentraxin-3 levels: a case-control study,” International Urology and Nephrology, pp. 1–11, 2011.
[44]
S. Nishikawa, T. Nagata, I. Morisaki, T. Oka, and H. Ishida, “Pathogenesis of drug-induced gingival overgrowth. a review of studies in the rat model,” Journal of Periodontology, vol. 67, no. 5, pp. 463–471, 1996.