Diabetic retinopathy (DR) is the major cause of acquired blindness in working-age adults. Current treatments for DR (laser photocoagulation, intravitreal corticosteroids, intravitreal antivascular endothelial growth factor (VEGF) agents, and vitreo-retinal surgery) are applicable only at advanced stages of the disease and are associated with significant adverse effects. Therefore, new pharmacological treatments for the early stages of the disease are needed. Vitreous fluid obtained from diabetic patients undergoing vitreoretinal surgery is currently used to explore the events that are taking place in the retina for clinical research. However, several confounding factors such as vitreous haemorrhage and concentration of vitreous proteins should be considered in the analysis of the results. In this paper we will focus on the vitreous fluid as a tool for exploring the mediators of DR and in particular the molecules related to inflammatory pathways. In addition, their role in the pathogenesis of DR will be discussed. The usefulness of new technologies such as flow cytometry and proteomics in identifying new candidates involved in the inflammatory process that occurs in DR will be overviewed. Finally, a more personalized treatment based on vitreous fluid analysis aiming to reduce the burden associated with DR is suggested. 1. Introduction Diabetic retinopathy (DR) remains the leading cause of blindness and vision loss among adults aged under 40 years in the developed world. Population-based studies suggest that about one-third of the diabetic population have signs of DR and approximately one-tenth have vision-threatening stages of retinopathy such as diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) [1–3]. DR is associated with considerable costs related to laser coagulation therapy, vitrectomy in severe cases, and eventually costs for social support when useful vision has deteriorated completely [4]. In this regard, it has been reported that the consumption of health care resources is almost double in type 2 diabetic patients with microvascular complications than in patients without it [5]. Notably, average healthcare costs increase considerably with the severity of DR, which suggests that preventing the progression of DR may alleviate the economic burden related to this complication of diabetes [6]. Current treatments for DR (laser photocoagulation, intravitreal corticosteroids, intravitreal anti-VEGF agents, and vitreo-retinal surgery) are applicable only at advanced stages of the disease and are associated with significant adverse
References
[1]
N. Cheung, P. Mitchell, and T. Y. Wong, “Diabetic retinopathy,” The Lancet, vol. 376, no. 9735, pp. 124–136, 2010.
[2]
E. Chen, M. Looman, M. Laouri et al., “Burden of illness of diabetic macular edema: literature review,” Current Medical Research and Opinion, vol. 26, no. 7, pp. 1587–1597, 2010.
[3]
E. L. Lamoureux and T. Y. Wong, “Diabetic retinopathy in 2011: further insights from new epidemiological studies and clinical trials,” Diabetes Care, vol. 34, no. 4, pp. 1066–1067, 2011.
[4]
J. C. Javitt, “Cost savings associated with detection and treatment of diabetic eye disease,” PharmacoEconomics, vol. 8, supplement 1, pp. 33–39, 1995.
[5]
E. M. Pelletier, B. Shim, R. Ben-Joseph, and J. J. Caro, “Economic outcomes associated with microvascular complications of type 2 diabetes mellitus: results from a US claims data analysis,” PharmacoEconomics, vol. 27, no. 6, pp. 479–490, 2009.
[6]
E. Heintz, A. B. Wirehn, B. B. Peebo, U. Rosenqvist, and L. ?. Levin, “Prevalence and healthcare costs of diabetic retinopathy: a population-based register study in Sweden,” Diabetologia, vol. 53, no. 10, pp. 2147–2154, 2010.
[7]
Q. Mohamed, M. C. Gillies, and T. Y. Wong, “Management of diabetic retinopathy: a systematic review,” JAMA, vol. 298, no. 8, pp. 902–916, 2007.
[8]
R. Simó and C. Hernández, “Advances in the medical treatment of diabetic retinopathy,” Diabetes Care, vol. 32, no. 8, pp. 1556–1562, 2009.
[9]
R. Simó and C. Hernández, “Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy,” Diabetologia, vol. 51, no. 9, pp. 1574–1580, 2008.
[10]
R. Robinson, V. A. Barathi, S. S. Chaurasia, T. Y. Wong, and T. S. Kern, “Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals,” DMM Disease Models and Mechanisms, vol. 5, no. 4, pp. 444–456, 2012.
[11]
J. Ambati, K. V. Chalam, D. K. Chawala et al., “Elevated γ-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy,” Archives of Ophthalmology, vol. 115, no. 9, pp. 1161–1166, 1997.
[12]
R. Simó, E. Carrasco, M. García-Ramírez, and C. Hernández, “Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy,” Current Diabetes Reviews, vol. 2, no. 1, pp. 71–98, 2006.
[13]
R. Simó and C. Hernández, “Growth factors in the diabetic eye,” Frontiers in Diabetes, vol. 20, pp. 109–123, 2010.
[14]
E. Carrasco, C. Hernández, A. Miralles, P. Huguet, J. Farrés, and R. Simó, “Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration,” Diabetes Care, vol. 30, no. 11, pp. 2902–2908, 2007.
[15]
M. Garcia-Ramírez, C. Hernández, M. Villarroel et al., “Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy,” Diabetologia, vol. 52, no. 12, pp. 2633–2641, 2009.
[16]
D. A. Antonetti, R. Klwin, and T. W. Gardner, “Diabetic retinopathy,” The New England Journal of Medicine, vol. 13, pp. 1227–1239, 2012.
[17]
T. S. Kern, “Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy,” Experimental Diabetes Research, vol. 2007, p. 95103, 2007.
[18]
J. Tang and T. S. Kern, “Inflammation in diabetic retinopathy,” Progress in Retinal and Eye Research, vol. 30, no. 5, pp. 343–358, 2011.
[19]
A. M. Abu el-Asrar, “Role of inflammation in the pathogenesis of Diabetic Retinopathy,” Middle East African Journal of Ophthalmology, vol. 19, pp. 70–74, 2012.
[20]
G. Guarda and A. So, “Regulation of inflammasome activity,” Immunology, vol. 130, no. 3, pp. 329–336, 2010.
[21]
R. A. Kowluru and S. Odenbach, “Role of interleukin-1β in the pathogenesis of diabetic retinopathy,” British Journal of Ophthalmology, vol. 88, no. 10, pp. 1343–1347, 2004.
[22]
W. Ludwig, O. Strunk, R. Westram, et al., “ARB: a software environment for sequence data,” Nucleic Acids Research, vol. 32, no. 4, pp. 1363–1371, 2004.
[23]
J. A. Vincent and S. Mohr, “Inhibition of caspase-1/interleukin-1β signaling prevents degeneration of retinal capillaries in diabetes and galactosemia,” Diabetes, vol. 56, no. 1, pp. 224–230, 2007.
[24]
N. Demircan, B. G. Safran, M. Soylu, A. A. Ozcan, and S. Sizmaz, “Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy,” Eye, vol. 20, no. 12, pp. 1366–1369, 2006.
[25]
J. I. Patel, G. M. Saleh, P. G. Hykin, Z. J. Gregor, and I. A. Cree, “Concentration of haemodynamic and inflammatory related cytokines in diabetic retinopathy,” Eye, vol. 22, no. 2, pp. 223–228, 2008.
[26]
D. Posada, “jModelTest: phylogenetic model averaging,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1253–1256, 2008.
[27]
C. Hernández, R. M. Segura, A. Fonollosa, E. Carrasco, G. Francisco, and R. Simó, “Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy,” Diabetic Medicine, vol. 22, no. 6, pp. 719–722, 2005.
[28]
S. Hayasaka, X. Y. Zhang, H. S. Cui et al., “Vitreous chemokines and Sho (Zheng in Chinese) of Chinese-Korean-Japanese medicine in patients with diabetic vitreoretinopathy,” American Journal of Chinese Medicine, vol. 34, no. 4, pp. 537–543, 2006.
[29]
P. Murugeswari, D. Shukla, A. Rajendran, R. Kim, P. Namperumalsamy, and V. Muthukkaruppan, “Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales' disease,” Retina, vol. 28, no. 6, pp. 817–824, 2008.
[30]
D. D. Taub, M. Anver, J. J. Oppenheim, D. L. Longo, and W. J. Murphy, “T lymphocyte recruitment by interleukin-8 (IL-8): IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo,” The Journal of Clinical Investigation, vol. 97, no. 8, pp. 1931–1941, 1996.
[31]
H. Ghasemi, T. Ghazanfari, R. Yaraee, S. Faghihzadeh, and Z. M. Hassan, “Roles of IL-8 in ocular inflammations: a review,” Ocular Immunology and Inflammation, vol. 19, no. 6, pp. 401–412, 2011.
[32]
I. A. El-Ghrably, H. S. Dua, G. M. Orr, D. Fischer, and P. J. Tighe, “Intravitreal invading cells contribute to vitreal cytokine milieu in proliferative vitreoretinopathy,” British Journal of Ophthalmology, vol. 85, no. 4, pp. 461–470, 2001.
[33]
A. M. Abu El-Asrar, S. Struyf, D. Kangave, K. Geboes, and J. Van Damme, “Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy,” European Cytokine Network, vol. 17, no. 3, pp. 155–165, 2006.
[34]
W. Zhang, H. Liu, M. Al-Shabrawey, R. Caldwell, and R. Caldwell, “Inflammation and diabetic retinal microvascular complications,” Journal of Cardiovascular Disease Research, vol. 2, no. 2, pp. 96–103, 2011.
[35]
M. Gharaee-Kermani, E. M. Denholm, and S. H. Phan, “Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors,” The Journal of Biological Chemistry, vol. 271, no. 30, pp. 17779–17784, 1996.
[36]
K. H. Hong, J. Ryu, and K. H. Han, “Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A,” Blood, vol. 105, no. 4, pp. 1405–1407, 2005.
[37]
S. Rangasamy, P. G. McGuire, and A. Das, “Diabetic retinopathy and inflammation: novel therapeutic targets,” Middle East African Journal of Ophthalmology, vol. 19, no. 1, pp. 52–59, 2012.
[38]
S. G. Elner, R. Strieter, Z. M. Bian et al., “Interferon-induced protein 10 and interleukin 8: C-X-C chemokines present in proliferative diabetic retinopathy,” Archives of Ophthalmology, vol. 116, no. 12, pp. 1597–1601, 1998.
[39]
Y. Suzuki, M. Nakazawa, K. Suzuki, H. Yamazaki, and Y. Miyagawa, “Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion,” Japanese Journal of Ophthalmology, vol. 55, no. 3, pp. 256–263, 2011.
[40]
R. M. Strieter, M. D. Burdick, J. Mestas, B. Gomperts, M. P. Keane, and J. A. Belperio, “Cancer CXC chemokine networks and tumour angiogenesis,” European Journal of Cancer, vol. 42, no. 6, pp. 768–778, 2006.
[41]
N. Godessart and S. L. Kunkel, “Chemokines in autoimmune disease,” Current Opinion in Immunology, vol. 13, no. 6, pp. 670–675, 2001.
[42]
L. Lasagni, M. Francalanci, F. Annunziato et al., “An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4,” Journal of Experimental Medicine, vol. 197, no. 11, pp. 1537–1549, 2003.
[43]
S. G. Kelsen, M. O. Aksoy, Y. Yang et al., “The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells,” American Journal of Physiology, vol. 287, no. 3, pp. L584–L591, 2004.
[44]
R. J. Bodnar, C. C. Yates, and A. Wells, “IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain,” Circulation Research, vol. 98, no. 5, pp. 617–625, 2006.
[45]
H. Shiraha, A. Glading, J. Chou, Z. Jia, and A. Wells, “Activation of m-calpain (calpain II) by epidermal growth factor is limited by protein kinase A phosphorylation of m-calpain,” Molecular and Cellular Biology, vol. 22, no. 8, pp. 2716–2727, 2002.
[46]
I. Petrai, K. Rombouts, L. Lasagni et al., “Activation of p38MAPK mediates the angiostatic effect of the chemokine receptor CXCR3-B,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 9, pp. 1764–1774, 2008.
[47]
R. J. Bodnar, C. C. Yates, M. E. Rodgers, X. Du, and A. Wells, “IP-10 induces dissociation of newly formed blood vessels,” Journal of Cell Science, vol. 122, no. 12, part 2, pp. 2064–2077, 2009.
[48]
A. L. Angiolillo, C. Sgadari, D. D. Taub et al., “Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo,” Journal of Experimental Medicine, vol. 182, no. 1, pp. 155–162, 1995.
[49]
R. M. Strieter, S. L. Kunkel, D. A. Arenberg, M. D. Burdick, and P. J. Polverini, “Interferon γ-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis,” Biochemical and Biophysical Research Communications, vol. 210, no. 1, pp. 51–57, 1995.
[50]
C. C. Yates-Binder, M. Rodgers, J. Jaynes, A. Wells, R. J. Bodnar, and T. Turner, “An IP-10 (CXCL10)-derived peptide inhibits angiogenesis,” PLoS ONE, vol. 7, no. 7, Article ID e40812, 2012.
[51]
H. M. Hatch, D. Zheng, M. L. Jorgensen, and B. E. Petersen, “SDF-1α/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats,” Cloning and Stem Cells, vol. 4, no. 4, pp. 339–351, 2002.
[52]
J. M. Butler, S. M. Guthrie, M. Koc et al., “SDF-1 is both necessary and sufficient to promote proliferative retinopathy,” The Journal of Clinical Investigation, vol. 115, no. 1, pp. 86–93, 2005.
[53]
M. B. Grant, A. Afzal, P. Spoerri, H. Pan, L. C. Shaw, and R. N. Mames, “The role of growth factors in the pathogenesis of diabetic retinopathy,” Expert Opinion on Investigational Drugs, vol. 13, no. 10, pp. 1275–1293, 2004.
[54]
A. M. A. El-Asrar, M. I. Nawaz, D. Kangave et al., “High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy,” Molecular Vision, vol. 17, pp. 1829–1838, 2011.
[55]
N. Parameswaran and S. Patial, “Tumor necrosis factor-a signaling in macrophages,” Critical Reviews in Eukaryotic Gene Expression, vol. 20, no. 2, pp. 87–103, 2010.
[56]
S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006.
[57]
S. Doganay, C. Evereklioglu, H. Er et al., “Comparison of serum NO, TNF-α, IL-1β, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus,” Eye, vol. 16, no. 2, pp. 163–170, 2002.
[58]
C. A. Aveleira, C. M. Lin, S. F. Abcouwer, A. F. Ambrósio, and D. A. Antonetti, “TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability,” Diabetes, vol. 59, no. 11, pp. 2872–2882, 2010.
[59]
Y. Kitaoka, Y. Kitaoka, J. M. K. Kwong et al., “TNF-α-induced optic nerve degeneration and nuclear factor-κB p65,” Investigative Ophthalmology and Visual Science, vol. 47, no. 4, pp. 1448–1457, 2006.
[60]
M. G. Madigan, A. A. Sadun, N. S. Rao, P. U. Dugel, W. N. Tenhula, and P. S. Gill, “Tumor necrosis factor-alpha (TNF-α)-induced optic neuropathy in rabbits,” Neurological Research, vol. 18, no. 2, pp. 176–184, 1996.
[61]
A. M. Joussen, V. Poulaki, N. Mitsiades et al., “Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression,” The FASEB Journal, vol. 16, no. 3, pp. 438–440, 2002.
[62]
A. Mirshahi, R. Hoehn, K. Lorenz, C. Kramann, and H. Baatz, “Anti-tumor necrosis factor alpha for retinal diseases: current knowledge and future concepts,” Journal of Ophthalmic and Vision Research, vol. 7, no. 1, pp. 39–44, 2012.
[63]
A. M. Joussen, T. Murata, A. Tsujikawa, B. Kirchhof, S. E. Bursell, and A. P. Adamis, “Leukocyte-mediated endothelial cell injury and death in the diabetic retina,” American Journal of Pathology, vol. 158, no. 1, pp. 147–152, 2001.
[64]
A. M. Joussen, V. Poulaki, M. L. Le et al., “A central role for inflammation in the pathogenesis of diabetic retinopathy,” The FASEB Journal, vol. 18, no. 12, pp. 1450–1452, 2004.
[65]
H. Tamura, K. Miyamoto, J. Kiryu et al., “Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina,” Investigative Ophthalmology and Visual Science, vol. 46, no. 4, pp. 1440–1444, 2005.
[66]
A. M. Joussen, V. Poulaki, N. Mitsiades et al., “Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes,” The FASEB Journal, vol. 17, no. 1, pp. 76–78, 2003.
[67]
D. S. McLeod, D. J. Lefer, C. Merges, and G. A. Lutty, “Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid,” American Journal of Pathology, vol. 147, no. 3, pp. 642–653, 1995.
[68]
H. Song, L. Wang, and Y. Hui, “Expression of CD18 on the neutrophils of patients with diabetic retinopathy,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 245, no. 1, pp. 24–31, 2007.
[69]
N. Kociok, S. Radetzky, T. U. Krohne et al., “ICAM-1 depletion does not alter retinal vascular development in a model of oxygen-mediated neovascularization,” Experimental Eye Research, vol. 89, no. 4, pp. 503–510, 2009.
[70]
G. A. Limb, J. Hickman-Casey, R. D. Hollifield, and A. H. Chignell, “Vascular adhesion molecules in vitreous from eyes with proliferative diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 40, no. 10, pp. 2453–2457, 1999.
[71]
C. Hernández, R. Burgos, A. Cantón, J. García-Arumí, R. M. Segura, and R. Simó, “Vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with proliferative diabetic retinopathy: a case-control study,” Diabetes Care, vol. 24, no. 3, pp. 516–521, 2001.
[72]
J. Adamiec-Mroczek, J. Oficjalska-M?yńczak, and M. Misiuk-Hoj?o, “Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: analysis of vitreous samples,” Cytokine, vol. 49, no. 3, pp. 269–274, 2010.
[73]
M. Murata, K. Noda, J. Fukuhara et al., “Soluble vascular adhesion protein-1 accumulates in proliferative diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 53, pp. 4055–4062, 2012.
[74]
K. Noda, S. Nakao, S. Ishida, et al., “Leukocyte adhesion molecules in diabetic retinopathy,” Journal of Ophthalmology, vol. 2012, Article ID 279037, 6 pages, 2012.
[75]
D. Navaratna, P. G. McGuire, G. Menicucci, and A. Das, “Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes,” Diabetes, vol. 56, no. 9, pp. 2380–2387, 2007.
[76]
A. Cantón, E. M. Martinez-Cáceres, C. Hernández, C. Espejo, J. García-Arumí, and R. Simó, “CD4-CD8 and CD28 expression in T cells infiltrating the vitreous fluid in patients with proliferative diabetic retinopathy. A flow cytometric analysis,” Archives of Ophthalmology, vol. 122, no. 5, pp. 743–749, 2004.
[77]
G. Moalem, R. Leibowitz-Amit, E. Yoles, F. Mor, I. R. Cohen, and M. Schwartz, “Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy,” Nature Medicine, vol. 5, no. 1, pp. 49–55, 1999.
[78]
M. Schwartz, “T cell mediated neuroprotection is a physiological response to central nervous system insults,” Journal of Molecular Medicine, vol. 78, no. 11, pp. 594–597, 2000.
[79]
G. Moalem, A. Gdalyahu, Y. Shani et al., “Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity,” Journal of Autoimmunity, vol. 15, no. 3, pp. 331–345, 2000.
[80]
S. A. Wolf, J. Fisher, I. Bechmann, B. Steiner, E. Kwidzinski, and R. Nitsch, “Neuroprotection by T-cells depends on their subtype and activation state,” Journal of Neuroimmunology, vol. 133, no. 1-2, pp. 72–80, 2002.
[81]
C. Hernández, F. Ortega, M. García-Ramírez et al., “Lipopolysaccharide-binding protein and soluble CD14 in the vitreous fluid of patients with proliferative diabetic retinopathy,” Retina, vol. 30, no. 2, pp. 345–352, 2010.
[82]
T. Nakanishi, R. Koyama, T. Ikeda, and A. Shimizu, “Catalogue of soluble proteins in the human vitreous humor: comparison between diabetic retinopathy and macular hole,” Journal of Chromatography B, vol. 776, no. 1, pp. 89–100, 2002.
[83]
R. Koyama, T. Nakanishi, T. Ikeda, and A. Shimizu, “Catalogue of soluble proteins in human vitreous humor by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry including seven angiogenesis-regulating factors,” Journal of Chromatography B, vol. 792, no. 1, pp. 5–21, 2003.
[84]
K. Yamane, A. Minamoto, H. Yamashita et al., “Proteome analysis of human vitreous proteins,” Molecular & Cellular Proteomics, vol. 2, no. 11, pp. 1177–1187, 2003.
[85]
C. W. Wu, J. L. Sauter, P. K. Johnson, C. D. Chen, and T. W. Olsen, “Identification and localization of major soluble vitreous proteins in human ocular tissue,” American Journal of Ophthalmology, vol. 137, no. 4, pp. 655–661, 2004.
[86]
M. García-Ramírez, F. Canals, C. Hernández et al., “Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): a new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy,” Diabetologia, vol. 50, no. 6, pp. 1294–1303, 2007.
[87]
T. Kim, J. K. Sang, K. Kim et al., “Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patients,” Proteomics, vol. 7, no. 22, pp. 4203–4215, 2007.
[88]
B. B. Gao, X. Chen, N. Timothy, L. P. Aiello, and E. P. Feener, “Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy,” Journal of Proteome Research, vol. 7, no. 6, pp. 2516–2525, 2008.
[89]
T. Shitama, H. Hayashi, S. Noge et al., “Proteome profiling of vitreoretinal diseases by cluster analysis,” Proteomics–Clinical Applications, vol. 2, no. 9, pp. 1265–1280, 2008.
[90]
M. Ouchi, K. West, J. W. Crabb, S. Kinoshita, and M. Kamei, “Proteomic analysis of vitreous from diabetic macular edema,” Experimental Eye Research, vol. 81, no. 2, pp. 176–182, 2005.
[91]
B. B. Gao, A. Clermont, S. Rook et al., “Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation,” Nature Medicine, vol. 13, no. 2, pp. 181–188, 2007.
[92]
C. Hernández, M. García-Ramírez, N. Colomé et al., “New pathogenic candidates for diabetic macular edema detected by proteomic analysis,” Diabetes Care, vol. 33, no. 7, p. e92, 2010.
[93]
W. Chen, H. Lu, K. Dutt, A. Smith, D. Hunt Margaret, and R. C. Hunt, “Expression of the protective proteins hemopexin and haptoglobin cells of the neural retina,” Experimental Eye Research, vol. 67, no. 1, pp. 83–93, 1998.
[94]
J. J. Kapojos, A. Van Den Berg, H. Van Goor et al., “Production of hemopexin by TNF-α stimulated human mesangial cells,” Kidney International, vol. 63, no. 5, pp. 1681–1686, 2003.
[95]
A. S. Wilson, B. G. Hobbs, W. Y. Shen et al., “Argon laser photocoagulation-induced modification of gene expression in the retina,” Investigative Ophthalmology and Visual Science, vol. 44, no. 4, pp. 1426–1434, 2003.
[96]
L. P. Aiello, R. L. Avery, P. G. Arrigg et al., “Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders,” The New England Journal of Medicine, vol. 331, no. 22, pp. 1480–1487, 1994.
[97]
R. Simó, A. Lecube, L. Sararols et al., “Deficit of somatostatin-like immunoreactivity in the vitreous fluid of diabetic patients. Possible role in the development of proliferative diabetic retinopathy,” Diabetes Care, vol. 25, no. 12, pp. 2282–2286, 2002.
[98]
R. Simó, E. Carrasco, A. Fonollosa, J. García-Arumí, R. Casamitjana, and C. Hernández, “Deficit of somatostatin in the vitreous fluid of patients with diabetic macular edema,” Diabetes Care, vol. 30, no. 3, pp. 725–727, 2007.
[99]
C. Hernández, E. Carrasco, R. Casamitjana, R. Deulofeu, J. García-Arumí, and R. Simó, “Somatostatin molecular variants in the vitreous fluid: a comparative study between diabetic patients with proliferative diabetic retinopathy and nondiabetic control subjects,” Diabetes Care, vol. 28, no. 8, pp. 1941–1947, 2005.
[100]
C. Hernández and R. Simó, “Strategies for blocking angiogenesis in diabetic retinopathy: from basic science to clinical practice,” Expert Opinion on Investigational Drugs, vol. 16, no. 8, pp. 1209–1226, 2007.
[101]
I. Barba, M. Garcia-Ramírez, C. Hernández et al., “Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor,” Investigative Ophthalmology and Visual Science, vol. 51, no. 9, pp. 4416–4421, 2010.