全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Eigenvalue estimates for Dirac operators with parallel characteristic torsion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Assume that the compact Riemannian spin manifold $(M^n,g)$ admits a $G$-structure with characteristic connection $\nabla$ and parallel characteristic torsion ($\nabla T=0$), and consider the Dirac operator $D^{1/3}$ corresponding to the torsion $T/3$. This operator plays an eminent role in the investigation of such manifolds and includes as special cases Kostant's ``cubic Dirac operator'' and the Dolbeault operator. In this article, we describe a general method of computation for lower bounds of the eigenvalues of $D^{1/3}$ by a clever deformation of the spinorial connection. In order to get explicit bounds, each geometric structure needs to be investigated separately; we do this in full generality in dimension 4 and for Sasaki manifolds in dimension 5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133