全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Rank One Solvable p-adic Differential Equation and Finite Abelian Characters via Lubin-Tate groups

DOI: 10.1007/s00208-006-0040-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

We introduce a new class of exponentials of Artin-Hasse type, called $\boldsymbol{\pi}$-exponentials. These exponentials depends on the choice of a generator $\boldsymbol{\pi}$ of the Tate module of a Lubin-Tate group $\mathfrak{G}$ over $\mathbb{Z}_p$. They arise naturally as solutions of solvable differential modules over the Robba ring. If $\mathfrak{G}$ is isomorphic to $\hat{\mathbb{G}}_m$ over $\mathbb{Z}_p$, we develop methods to test their over-convergence, and get in this way a stronger version of the Frobenius structure theorem for differential equations. We define a natural transformation of the Artin-Schreier complex into the Kummer complex. This provides an explicit generator of the Kummer unramified extension of $\mathcal{E}^{\dag}_{K_{\infty}}$, whose residue field is a given Artin-Schreier extension of k((t)), where k is the residue field of K. We then compute explicitely the group, under tensor product, of isomorphism classes of rank one solvable differential equations. Moreover, we get a canonical way to compute the rank one $\phi$-module over $\mathcal{E}^{\dag}_{K_{\infty}}$ attached to a rank one representation of $Gal(k((t))^{sep}/k((t)))$, defined by an Artin-Schreier character.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133