全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2003 

Area Inequalities for Embedded Disks Spanning Unknotted Curves

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show that a smooth unknotted curve in R^3 satisfies an isoperimetric inequality that bounds the area of an embedded disk spanning the curve in terms of two parameters: the length L of the curve and the thickness r (maximal radius of an embedded tubular neighborhood) of the curve. For fixed length, the expression giving the upper bound on the area grows exponentially in 1/r^2. In the direction of lower bounds, we give a sequence of length one curves with r approaching 0 for which the area of any spanning disk is bounded from below by a function that grows exponentially with 1/r. In particular, given any constant A, there is a smooth, unknotted length one curve for which the area of a smallest embedded spanning disk is greater than A.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133