全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2003 

Classical and quantum dilogarithmic invariants of flat PSL(2,C)-bundles over 3-manifolds

DOI: 10.2140/gt.2005.9.493

Full-Text   Cite this paper   Add to My Lib

Abstract:

We introduce a family of matrix dilogarithms, which are automorphisms of C^N tensor C^N, N being any odd positive integer, associated to hyperbolic ideal tetrahedra equipped with an additional decoration. The matrix dilogarithms satisfy fundamental five-term identities that correspond to decorated versions of the 2 --> 3 move on 3-dimensional triangulations. Together with the decoration, they arise from the solution we give of a symmetrization problem for a specific family of basic matrix dilogarithms, the classical (N=1) one being the Rogers dilogarithm, which only satisfy one special instance of five-term identity. We use the matrix dilogarithms to construct invariant state sums for closed oriented 3-manifolds $W$ endowed with a flat principal PSL(2,C)-bundle rho, and a fixed non empty link L if N>1, and for (possibly "marked") cusped hyperbolic 3-manifolds M. When N=1 the state sums recover known simplicial formulas for the volume and the Chern-Simons invariant. When N>$, the invariants for M are new; those for triples (W,L,rho) coincide with the quantum hyperbolic invariants defined in [Topology 43 (2004) 1373-1423], though our present approach clarifies substantially their nature. We analyse the structural coincidences versus discrepancies between the cases N=1 and N>1, and we formulate "Volume Conjectures", having geometric motivations, about the asymptotic behaviour of the invariants when N tends to infinity.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133