全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1998 

Invariants de Von Neumann des faisceaux coherents

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inspired by some recent work of M. Farber, W. L\"uck and M. Shubin on L2 homotopy invariants of infinite Galois coverings of simplicial complexes (L2 Betti numbers and Novikov-Shubin invariants), this article extends Atiyah's L2 index theory to coherent analytic sheaves on complex analytic spaces. Let $X$ be a complex analytic space with a proper cocompact biholomorphic action of a discrete group $G$. Let $F$ be a $G$-equivariant coherent analytic sheaf on $X$. We give a meaningful notion of a L2 section of $F$ on $X$. We also construct L2 cohomology groups. We prove that these L2 cohomology groups belong to an abelian category of topological $G$-modules introduced by M. Farber. On this category there are two kinds of invariants: Von Neumann dimension and Novikov-Shubin invariants. The alternating sum of the Von Neumann dimensions of the L2 cohomology groups of $F$ can be computed by an analogue of Atiyah's L2 index theorem. Novikov-Shubin invariants show up when the L2 cohomology groups are non-Hausdorff and, like in algebraic topology, are still very intriguing (and not very well understood).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133