全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

On the geography and botany of knot Floer homology

Full-Text   Cite this paper   Add to My Lib

Abstract:

This note explores two questions: (1) Which bigraded groups arise as the knot Floer homology of a knot in the three-sphere? (2) Given a knot, how many distinct knots share its Floer homology? Regarding the first, we show there exist bigraded groups satisfying all previously known constraints of knot Floer homology which do not arise as the invariant of a knot. This leads to a new constraint for knots admitting lens space surgeries, as well as a proof that the rank of knot Floer homology detects the trefoil knot. For the second, we show that any non-trivial band sum of two unknots gives rise to an infinite family of distinct knots with isomorphic knot Floer homology. We also prove that the fibered knot with identity monodromy is strongly detected by its knot Floer homology, implying that Floer homology solves the word problem for mapping class groups of surfaces with non-empty boundary. Finally, we survey some conjectures and questions and, based on the results described above, formulate some new ones.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133