全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Spectrum of Lebesgue measure zero for Jacobi matrices of quasicrystals

DOI: 10.1007/s11040-013-9131-4

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study one-dimensional random Jacobi operators corresponding to strictly ergodic dynamical systems. In this context, we characterize the spectrum of these operators by non-uniformity of the transfer matrices and the set where the Lyapunov exponent vanishes. Adapting this result to subshifts satisfying the so-called Boshernitzan condition, it turns out that the spectrum is supported on a Cantor set with Lebesgue measure zero. This generalizes earlier results for Schr\"odinger operators.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133