全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Duke's Theorem and Continued Fractions

Full-Text   Cite this paper   Add to My Lib

Abstract:

For uniformly chosen random $\alpha \in [0,1]$, it is known the probability the $n^{\rm th}$ digit of the continued-fraction expansion, $[\alpha]_n$ converges to the Gauss-Kuzmin distribution $\mathbb{P}([\alpha]_n = k) \approx \log_2 (1 + 1/ k(k+2))$ as $n \to \infty$. In this paper, we show the continued fraction digits of $\sqrt{d}$, which are eventually periodic, also converge to the Gauss-Kuzmin distribution as $d \to \infty$ with bounded class number, $h(d)$. The proof uses properties of the geodesic flow in the unit tangent bundle of the modular surface, $T^1(\text{SL}_2 \mathbb{Z}\backslash \mathbb{H})$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133