全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Absorbing angles, Steiner minimal trees, and antipodality

DOI: 10.1007/s10957-009-9552-1

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give a new proof that a star $\{op_i:i=1,...,k\}$ in a normed plane is a Steiner minimal tree of its vertices $\{o,p_1,...,p_k\}$ if and only if all angles formed by the edges at o are absorbing [Swanepoel, Networks \textbf{36} (2000), 104--113]. The proof is more conceptual and simpler than the original one. We also find a new sufficient condition for higher-dimensional normed spaces to share this characterization. In particular, a star $\{op_i: i=1,...,k\}$ in any CL-space is a Steiner minimal tree of its vertices $\{o,p_1,...,p_k\}$ if and only if all angles are absorbing, which in turn holds if and only if all distances between the normalizations $\frac{1}{\|p_i\|}p_i$ equal 2. CL-spaces include the mixed $\ell_1$ and $\ell_\infty$ sum of finitely many copies of $R^1$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133