全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2011 

Algebraic boundaries of Hilbert's SOS cones

DOI: 10.1112/S0010437X12000437

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the geometry underlying the difference between non-negative polynomials and sums of squares. The hypersurfaces that discriminate these two cones for ternary sextics and quaternary quartics are shown to be Noether-Lefschetz loci of K3 surfaces. The projective duals of these hypersurfaces are defined by rank constraints on Hankel matrices. We compute their degrees using numerical algebraic geometry, thereby verifying results due to Maulik and Pandharipande. The non-SOS extreme rays of the two cones of non-negative forms are parametrized respectively by the Severi variety of plane rational sextics and by the variety of quartic symmetroids.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133