全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Proof of a Conjecture of Segre and Bartocci on Monomial Hyperovals in Projective Planes

Full-Text   Cite this paper   Add to My Lib

Abstract:

The existence of certain monomial hyperovals $D(x^k)$ in the finite Desarguesian projective plane $PG(2,q)$, $q$ even, is related to the existence of points on certain projective plane curves $g_k(x,y,z)$. Segre showed that some values of $k$ ($k=6$ and $2^i$) give rise to hyperovals in $PG(2,q)$ for infinitely many $q$. Segre and Bartocci conjectured that these are the only values of $k$ with this property. We prove this conjecture through the absolute irreducibility of the curves $g_k$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133