全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Random graphs with few disjoint cycles

Full-Text   Cite this paper   Add to My Lib

Abstract:

The classical Erd\H{o}s-P\'{o}sa theorem states that for each positive integer k there is an f(k) such that, in each graph G which does not have k+1 disjoint cycles, there is a blocker of size at most f(k); that is, a set B of at most f(k) vertices such that G-B has no cycles. We show that, amongst all such graphs on vertex set {1,..,n}, all but an exponentially small proportion have a blocker of size k. We also give further properties of a random graph sampled uniformly from this class; concerning uniqueness of the blocker, connectivity, chromatic number and clique number. A key step in the proof of the main theorem is to show that there must be a blocker as in the Erd\H{o}s-P\'{o}sa theorem with the extra `redundancy' property that B-v is still a blocker for all but at most k vertices v in B.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133