全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Obtaining intermediate rings of a local profinite Galois extension without localization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let E_n be the Lubin-Tate spectrum and let G_n be the nth extended Morava stabilizer group. Then there is a discrete G_n-spectrum F_n, with L_{K(n)}(F_n) \simeq E_n, that has the property that (F_n)^{hU} \simeq E_n^{hU}, for every open subgroup U of G_n. In particular, (F_n)^{hG_n} \simeq L_{K(n)}(S^0). More generally, for any closed subgroup H of G_n, there is a discrete H-spectrum Z_{n, H}, such that (Z_{n, H})^{hH} \simeq E_n^{hH}. These conclusions are obtained from results about consistent k-local profinite G-Galois extensions E of finite vcd, where L_k(-) is L_M(L_T(-)), with M a finite spectrum and T smashing. For example, we show that L_k(E^{hH}) \simeq E^{hH}, for every open subgroup H of G.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133