全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

An analogue of Hilbert's Syzygy Theorem for the algebra of one-sided inverses of a polynomial algebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

An analogue of Hilbert's Syzygy Theorem is proved for the algebra $\mS_n (A)$ of one-sided inverses of the polynomial algebra $A[x_1, ..., x_n]$ over an arbitrary ring $A$: $$ \lgldim (\mS_n(A))= \lgldim (A) +n.$$ The algebra $\mS_n(A)$ is noncommutative, neither left nor right Noetherian and not a domain. The proof is based on a generalization of the Theorem of Kaplansky (on the projective dimension) obtained in the paper. As a consequence it is proved that for a left or right Noetherian algebra $A$: $$ \wdim (\mS_n(A))= \wdim (A) +n.$$

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133