全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Manin obstruction to strong approximation for homogeneous spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a homogeneous space X (not necessarily principal) of a connected algebraic group G (not necessarily linear) over a number field k, we prove a theorem of strong approximation for the adelic points of X in the Brauer-Manin set. Namely, for an adelic point x of X orthogonal to a certain subgroup (which may contain transcendental elements) of the Brauer group Br(X) of X with respect to the Manin pairing, we prove a strong approximation property for x away from a finite set S of places of k. Our result extends a result of Harari for torsors of semiabelian varieties and a result of Colliot-Th\'el\`ene and Xu for homogeneous spaces of simply connected semisimple groups, and our proof uses those results.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133