全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Joint Vertex Degrees in an Inhomogeneous Random Graph Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a random graph, counts for the number of vertices with given degrees will typically be dependent. We show via a multivariate normal and a Poisson process approximation that, for graphs which have independent edges, with a possibly inhomogeneous distribution, only when the degrees are large can we reasonably approximate the joint counts as independent. The proofs are based on Stein's method and the Stein-Chen method with a new size-biased coupling for such inhomogeneous random graphs, and hence bounds on distributional distance are obtained. Finally we illustrate that apparent (pseudo-) power-law type behaviour can arise in such inhomogeneous networks despite not actually following a power-law degree distribution.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133