|
Mathematics 2009
Random skew plane partitions with a piecewise periodic back wallDOI: 10.1007/s00023-011-0120-5 Abstract: Random skew plane partitions of large size distributed according to an appropriately scaled Schur process develop limit shapes. In the present work we consider the limit of large random skew plane partitions where the inner boundary approaches a piecewise linear curve with non-lattice slopes, describing the limit shape and the local fluctuations in various regions. This analysis is fairly similar to that in [OR2], but we do find some new behavior. For instance, the boundary of the limit shape is now a single smooth (not algebraic) curve, whereas the boundary in [OR2] is singular. We also observe the bead process introduced in [B] appearing in the asymptotics at the top of the limit shape.
|